Practical Numerical Simulation

Anthony Bourached
March 20, 2015

1 Poisson Equation

1.1 How to Run

The code is currently set to solve the problem with dirichlet boundary data. Uncomment
one line (noted in the program) in order to change to Neumann boundary data. The function
"print to file’ is currently set to print ¢(1/2,1/2) to screen and print the x, y and z component
of each coordinate in the field. However, the latter is commented out to improve computation
time if we are uninterested in plotting.

We update points by considering several different regions. The function update takes 7
parameters. The first two specify the region we’re interested in ie j0, and Joni,. The next
four specify conditions for that region: it will skip the region between the third and fourth
parameter; and same for the fifth and sixth. This can be seen from inside the function.
This method may seem cumbersome to the region however the method has been chosen
as it reduces computation time by having fewer for loops and if statements that would be
necessary to sepcify the boundaries of A and B otherwise. I believe this is reflected in the
run time of the programs.

We allow the corners to be updated twice in the update boundary function. This will
make no difference to the final convergence but the extra computation time taken to update
those four extra points per step is less costly and less cumbersome to the eye than adding
extra conditions in the if statements for this function. This was determined by running the
program in each case. The difference was found to be 0.02 seconds of run time.

1.2 The appropriate w

We wished to determine the optimum value of w for fastest convergence. To do this we put
an extra for loop in main that looped over w in the range from 0 to 1 in steps of 0.1. We
measured the number of steps of the algorithm takes to converge to three significant figures.

3500 w Vs Step SIZ§

3000

2500

Time Step
N
o
(=3
o

-
o
o
S

1000+

500+

Figure 1: The effect of w on the speed of convergence for Dirichlet Boundary conditions.
From figure 1 we can see that we clearly have fastest convergence in the range 0.85 <=

w <= 1. To determine the desired w more accurately we decreased the step size with which
we increase w by a factor of 100. This can be seen in figure 2.

320 w vs Step Slzg

w
o
=]

#
£
4
af©

N
@
S

.-'-""'!
o~

H

Time Step
N ~
-~ (=
(=] o

N
IN]
=]

200 n I I I
0.90 0.91 0.92 0.93 0.94 0.95

Figure 2: The effect of w on the speed of convergence for Dirichlet Boundary conditions.

We concluded from this that our optimum choice is w = 0.915.

2 Dirichlet Boundary Conditions

11
¢(§7§

It was ensured that this value was correct by returning a flag for each given point. The
flag would be 1 if the difference between the absloute value of the difference between the value

) = —0.365 (1)

2

at given point at iteration k+1 (¢**1(4, j)) and k (¢*(4, j)) is less than 1 x 1072 - ¢FF1(4, j).
Multiplying by ¢**1(i, j) is necessary to ensure that we are of the right order of magnitude.
For example, if ¢*1(i, j) is of the order 0.0001 then to give correct to three significant figures
we need 1 x 1073 - ¢**1(i, j) giving order 0.0000001. In this way we were guaranteed for
every point to have converged correct to at least 3 significant figures and we break the while
loop using boolean logic when the following condition is met:

l
Z flag = 0 (2)
i,

Where [? is the size of the field. A diagram of the converged field is shown in figure 3.

100

120 —20

Figure 3: A plot of the converged field for Dirichlet Boundary Conditions.

3 Neumann Boundary Conditions

We determined convergence for this part in the same way as for Dirichlet conditions. We
found:

925(%, %) — 0399 (3)

100

120 —20

Figure 4: A plot of the converged field for Neumann Boundary Conditions.

